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Abstract A Gaussian elimination form of inverse iteration within the complex
coordinate approach is shown to produce a simple uniform method of finding both real
bound state energies and complex resonant state energies for several problems, which
have been treated by a variety of methods in the literature. The energy shift method
for expectation values is shown to be a useful diagnostic tool.
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1 Introduction

Several recent works have shown that the resonant state energies for some systems can
be calculated by using a straightforward approach in which the equations appearing in
a traditional bound state calculation are modified by the simple procedure of making
an imbedded parameter become a complex variable. Thus, for example, the coefficient
B in a wavefunction factor of type exp(—Bx%2) for perturbed oscillator problems or
the coefficient Z in a wavefunction factor of type exp(—Zr) for perturbed hydrogen
atom problems are usually varied to optimize the calculation of bound state energies;
however, they also make it possible to find complex resonant state energies when they
are given complex values. This simple complexification approach has been shown
to work for hypervirial perturbation theory (HVPT) [1], for matrix diagonalization
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methods [2] and for the Hill-series method [3]. As a remarkable example of this
approach, it has been found that for a perturbed hydrogen atom a simple moment
method can give either real Zeeman effect energies (with Z real) or complex Stark
effect energies (with Z complex) [4].

The traditional complex rotation method for locating resonant state energies
involves a rotation of all the operators in the Hamiltonian (including the kinetic en-
ergy operator) and leads to a complex symmetric matrix eigenvalue problem. There
has been some debate in the previous literature about the situations in which the com-
plex rotation method is equivalent to the more simple complex basis approach [5,6],
with the authors of [6] claiming that the complex basis approach is the more funda-
mental one. However, for analytic potentials it is generally agreed that the matrices for
the two approaches are related by a similarity transformation and so lead to identical
spectra. As explained in Sect. 2, the complex basis approach is more easy to use and
in the present work we use it to look at the problem of finding only a selected few of
the eigenvalues of a complex symmetric matrix.

In [2], the complex symmetric matrix was transformed by means of a sequence of
simple similarity transformations, which is based on first order perturbation theory
and which is similar to the complex Jacobi approach. The method is sufficiently gen-
eral to work even for non-symmetric matrices but has the disadvantages that it sets
out to find the full spectrum and that it fills up the matrix as it proceeds. For many
test problems, we only require a few low-lying eigenvalues and are dealing with an
initial matrix, which has only a small bandwidth. As a method for solving systems of
linear equations, the traditional Gaussian elimination method has the special feature
that it preserves both the bandwidth and the symmetry of the initial square matrix
during the reduction process. The appropriate way to exploit this property while find-
ing only a few eigenvalues is to extract the eigenvalues and eigencolumns by using a
complex version of the Gaussian elimination method to perform inverse iteration on
the complex symmetric matrix. By finding (H — E)™NY for some starting column
and a sufficiently large N we can extract the eigenvalue closest to E. Because the
matrix bandwidth and symmetry is undisturbed during the process the matrix can be
stored in a very compact form. Such an approach is more simple than the use of a
complex version of other methods such as the Lanczos method, which, although it
finally reduces the matrix to tridiagonal form, would require a filter diagonalization
approach and the conversion of the basis set by the operator (H — E)~! to perform
the calculations reported here [7]. For small bandwidths, it is obviously easier to deal
with the matrix directly, as we do here.

In the present work, we use our method to find the complex energies of resonant
states of real potentials as well as the real energies for PT symmetric potentials. Sec-
tion 2 describes the method and later sections give results for several systems, some
of which have been treated in the previous literature. Section 3 produces both bound
and resonant state energies for a triple well system which was recently treated by the
Hill-series method. Section 4 treats a PT invariant Hamiltonian, which has been much
analysed in the literature and for which broken symmetry effects lead to the presence
of both real and complex eigenvalues in the spectrum. Section 5 deals with a cubically
perturbed oscillator, which has previously been used as an example of hyperasymp-
totic analysis. Section 6 shows that our approach can handle some unorthodox types
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of resonance. Section 7 deals with only bound states but demonstrates that it is not
necessary to use basis functions of definite parity to treat a centrosymmetric potential.
The numerical results show an initial quasi-convergence of the eigenvalues to the
energy given by HVPT. Section 8 gives a brief discussion.

2 The method of calculation

All the systems treated in this work can be handled in a matrix approach by using an
harmonic oscillator basis set. The advantage of using the complex basis approach is
that it can be implemented by using a very simple prescription; we write down the
real energy bound state theory and replace the relevant real parameter throughout by
a complex one. Thus, if we use a set of basis functions, which are the eigenfunctions
of the reference Hamiltonian

H(W) = —a D? + Wx? (1)

then we know that the energy of statenis E, = (2n+1)(Wa) 1/2 and that the coordinate
operator X has the matrix element

<n/x/n+1 == @AW @+ /2 )

To handle complex eigenvalue problems we simply make W complex in the formu-
lae given above.This will require the extraction of complex square and fourth roots
to evaluate the constants appearing in the formulae. The matrices for higher powers
of x can be constructed by using the complex form of the algebraic formula for the
appropriate matrix element or by direct numerical matrix multiplication. To find the
exact matrix elements by matrix multiplication we proceed by avoiding the kind of
edge effects which would give only approximations similar to those of the DVR or
HEG approaches [2]. Thus, for example, to find the x> matrix of N x N type we would
form the x matrix of (N + 3) x (N + 3) type and then reduce by 1 the dimension at each
step of the multiplications. Alternatively, the final matrix can be computed row by row,
using a long row which is filled up with the elements of the desired multiple product,
which are then loaded into the matrix. We can illustrate the use of the eigenfunctions
of Eq. 1 by showing the partitioning of a typical perturbed oscillator Hamiltonian (for
a cubic perturbation):

H=—aD? + Ux2 + VX = [-wz + WX2] FU-WZ+Vv3 (3

The term in square brackets is diagonal with diagonal elements E,,, while the matrix
elements of x> and x> are found as explained above. For brevity, Eq. 3 shows the real
variable case. For a resonance W becomes complex (e.g. W=WR+1i WI), while V
can be real or imaginary depending on the problem studied. Most of the oscillator
resonant states treated in the literature issue from states which are initially oscillator
bound states before the action of some perturbing potential. For such states, the WR
is usually kept equal to the real value of W, which is associated with the initial bound
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state, with WI being varied; when EI is small this choice suffices to give accurate
results. The W value involved is, of course, positive. An unphysical negative value
would not produce an initial bound state and would give a non-convergent process.
To search for a complex eigenvalue in the neighbourhood of energy E, we use
Gaussian elimination to find a sequence of columns X(n), which obey the equation

X + H=H — BE)~! Xn) (4)

The calculation proceeds as follows. At each stage, we set Y =X(n) and then solve
the linear equation system (H — E)X =Y for X using Gaussian elimination. We then
set X(n + 1)=X. In all the calculations reported here it sufficed to use Gaussian
elimination without pivoting and with a real E, since the complex arithmetic quickly
introduced the imaginary part EI of the sought eigenvalue, which is not very large for
the lower eigenvalues. The initial column X(0) is a column with every element given
the real value 1. At each iteration, the obtained column X(n—+ 1) is scaled to make its
first element equal to the real value 1 and then the current eigenvalue estimate is found
by evaluating the first row of the complex product HX(n + 1). Since complex arithme-
tic is being used it is possible to seek faster convergence by using the latest complex E
in the E position in Eq.4; however, this loses the advantage of having a fixed form of
the reduced matrix (H — E) throughout the calculation. After N steps of the process
we have obtained (H — E)™N X(0), which is dominated by the contribution from the
eigenvector with its eigenvalue closest to the E value being used. To find several of
the low eigenvalues, E is gradually increased to scan the relevant energy range. There
are three ways to check the stability of the results. First, the matrix dimension can be
gradually increased to check for a stable convergence to a limit, checking that this limit
has a negligible dependence on W. Second, as E is varied in small steps DE through the
scanned region, the same eigenvalue should emerge over several successive steps of E
if the calculation is initialized at each step. Third, the reference row for the evaluation
of E can be varied to see whether the eigenvalue varies. (The essential point is that
the basis function associated with the reference row must make a reasonably large
contribution to the eigencolumn).

3 An interesting triple well system

A recent study of the complexified form of the Hill-series technique [3] included some
calculations for a special triple well Hamiltonian

H(g) = —D? + X2 — 2g2x4 + g4x6 5)
which was introduced in [8] and later used to illustrate how the use of complex coor-
dinates in a matrix diagonalization approach can describe tunnelling effects in bound
systems [9]. The Riccati-Padé method can also describe these tunnelling effects[10].
By varying the imbedded parameter B in the factor exp(—Bx2/2) appearing in the
Hill-series formalism, it was found possible to produce both real and complex eigen-
values for H(g) at small g values. From a physical point of view the resonances can
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be regarded as referring to the outwards tunnelling of a wavepacket initially sited in
the inner well; from a mathematical point of view they are associated with a complex
scaled Hamiltonian [8]. The real eigenvalues are just the energies of the traditional
bound states, which would be expected for a potential which rises towards infinity at
large x values. The system described by Eq.5 thus provides an obvious test for the
method of the present work (and the prescription described at the start of Sect. 2). The
matrix of H(g) requires the first three powers of the x> matrix for its construction. The
matrix elements H(J,K) with K=1J to J4 3 are the only ones needing storage, since
the matrix is symmetric and we choose a basis with a definite even or odd parity. With
this choice, the compact storage scheme uses a linear array HC for which the H(J, K)
element is stored at the element HC(M) such that

H(J,K)=HC@J + K -3) (K =Jto] + 3) (6)

This coding has, of course, to be used in the various matrix operations and a copy of the
matrix is used in the elimination process (since this destroys the original matrix). The
use of compact storage would make it possible to use very large basis sets for a sym-
metric matrix with a small bandwidth. Although we only use dimensions up to about
200 in our examples, the approach avoids the large number of arithmetic operations
involved in our previous method [2] and so is less subject to the effects of rounding
errors when ordinary double precision is used. The full power of the compact matrix
operations is obviously not needed for the case of the smooth potentials treated here
but is necessary for handling singular perturbations of the oscillator, where it makes
basis sizes of up to 20,000 attainable in a simple procedure (work in preparation).
Numerical calculations showed that the complex resonance energies E = ER + i EI
with ER close to 1, as given in Table 3 of [3], were given to double precision by using
the complex W value (WR, WI) = (1, 15). The bound state energies of Table 4 of [3]
were found by using (WR, WI) = (1, 0). For these two cases, an even parity basis
set was used. We continued the calculation to give extra resonances which were not
studied in previous works. The lowest four resonances found are shown in Table 1
for several g values. The barrier between the inner and outer well has a height equal
to (4/27g%); the value of EI increases markedly as ER passes through that value. A
calculation using complex HVPT [1], although less accurate, agreed well with the
matrix calculations. This auxiliary perturbation calculation can identify the particular
state from which a resonance arises and so indicate the region of E to scan in the
matrix calculation. Table 2 shows some real bound state energies found for several
g values by setting (WR, WI) = (1, 0). The states with an energy close to 2 were
found by noting that at the outer minimum the potential has a leading term 4x2. It
thus seems likely that they are associated with localized states in the outer well. That
this is so was confirmed in two different ways. First, an HVPT calculation with its
origin at the centre of the outer well (and using the Taylor expansion of the potential
about that point) gave energies, which agree closely with those obtained from the
matrix calculation. Second, within the matrix calculation itself the small perturbing
term 0.0005x> was in turn added to and subtracted from the potential; the perturbed
eigenvalue was calculated for each case. The results then gave an accurate estimate of
the expectation value < x> >= dE/dV and the result indicated that the wavefunction
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Table 1 The lowest three

; g P ER EI
resonance state energies
f"frghe 6H"‘]I3ml_t°“(‘f“ H(g) 0.20 E 0.9325571582478 7.94775543926(—5)
W _q('l ’105;:1;1;;1 - 0 2.6156743444473 1.21030060549(~2)
= E 3.8713869659323 1.99483314620(—1)
dimension of 150 0.24 E 0.8944205532099 2.42463284005(—3)
0 2.3894780354803 1.11999490115(—1)
E 3.4581087741326 6.60180783826(—1)
0.28 E 0.8433344239234 1.59158594653(—2)
The parity P s cither 0 2.1950967814330 3.02661677759(—1)
evern (E) ot odd (0) E 3.2043949873518 1.18854425437(0)
Table 2 The lowest four bound )
state energies for the 8 P E ==
g;‘;ﬁ;“g“ugfg 35 E%(,)’O) g 020 E 0.93247629196422 0.596
e o 150 0 1.81996584353442 22315
E 1.82258016776947 22.423
0 2.62828330994496 2.438
0.24 E 0.89204244181975 0.768
0 1.69073242323339 13.508
E 1.73636556408804 14.348
0 2.53097937792111 4.093
0.28 E 0.82917630720481 1.121
The parity labels are as in 0 1.53456526498005 8.495
Table 1. The < x2 > values are E 1.70854344684062 9.587
0 2.64073480349469 4.817

found by the energy shift method

is indeed concentrated near the centre of the outer well. This energy shift approach to
finding expectation values is widely applicable and here is an efficient alternative to
the traditional method of working out < x?> > by using the matrix of x* together with
the eigencolumn, particularly since the eigencolumn would have to be normalized in
a preliminary step.

4 A system with PT invariance

The Schrodinger equation
(— D2 4+ A3 + Bix) W = (ER + iEDW %)

has been studied by several authors (e.g. [11,12]). The PT symmetry of the operator in
Eq. 7 suggests that the eigenvalues can be real (with EI=0). When B =0, the spectrum
is indeed entirely real but for non-zero B it is possible to have complex eigenvalues,
as demonstrated numerically in the moment method calculations of [11]. It is thus a
suitable test for the method of this work to see whether it can describe both the real
eigenvalues and the complex symmetry breaking eigenvalues for the operator in Eq. 7,
by analogy with the way in which it gave both real and complex eigenvalues for the
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Table 3 Low lying eigenvalues

A B ER EI
for the operator
D + Aix® + Bix, calculated 0 1.15626707198811
by using a W value of (1, 15) 1 0 4.10922875280966
and a matrix dimension of 150 1 0 7.5622738549787
with an even parity basis 1 0 11.3144218201962
1 0 15.291553750390
1 -3 1.22584757671327 —0.76002247143487
4.33343983644352
7.52519195567867
1 —4 1.24865673359469 —1.7617193016512
3.50876560739555
6.37980520633110
1 =5 1.34334319874918 —2.9073906160965
Three broken symmetry states 3.43138320167211
with complex energy are shown 5.16788868578734

problem treated in Sect. 3. To set up the matrix, we require the first three powers of
the matrix of x. The x> matrix arises because we need to adopt what is essentially a
renormalizing approach, in which a term —(WR +1i WI)x? must be included in the
perturbing potential in order to cancel the term, which is implicit in the operator Eq.2
associated with the basis set. Table 3 shows some typical results for the problem,
which are more accurate than those published in previous works. The results for the
cases A=1, B=—-3, —4, —5 were obtained by gradually increasing E in the term
H — E of the Gaussian elimination process. If a complex W is used in an attempt to
find a real eigenvalue then the EI value obtained decreases as the iterations proceed,
finally oscillating with an amplitude of roughly 10~!# at the standard level of double
precision which we used. The method of calculating expectation values explained in
Sect. 3 can be used for this problem. For example, if we set A=—1 and B=0 (to get
a real spectrum) then we can add a very small x> perturbing term to the potential to
show that for the potential Bx> — ix? the lowest order correction term for the ground
state energy is 1.9669085R3°.

5 The cubically perturbed oscillator

Alvarez and Casares [13] described the use of hyperasymptotics to find the complex
eigenvalues for the operator

H(g, ®) = (=1/2) <D2 + x2) + 23 exp(id) ®)

Using a complex perturbation parameter in the traditional Rayleigh—Schrodinger per-
turbation series for the energy would obviously give E(g, —®) as the complex conju-
gate of E(g, ®). However, the authors of [13] pointed out that the presence of a Stokes
line at ® = 0 means that a hyperasymptotic correction to the perturbative result is
needed for negative ® values, so that the complex conjugation symmetry is destroyed.
It was later shown that complex HVPT can give these corrected results directly for

@ Springer



1034

J Math Chem (2010) 47:1027-1037

Table 4 Groundstate complex

: \ @ ER EI
eigenvalues for the cubic
pHe““.rlbed. Oscl‘{”a“c’; with the ~0.10 0.4848327348572 3.621442463000(—3)
amiltonian H(g,®) given in ~0.08 0.4846443760119 2.91525529968(—3)
Eq. 8,forg=0.1 ~0.06 0.4844977122642 2.19506948166(—3)
~0.04 0.4843938809947 1.46508620844(—3)
~0.02 0.4843333450837 7.29406327924(—4)
0.00 0.4843159970041 ~8.06020950000(—6)
0.02 0.4843412576766 7.43653067984(—4)
An even parity basis with W et 0-04 0.4844081666578 —1.47399596288(~3)
equal 10 (0.5, 0.5) was used. with  0-06 0.4845154620899 ~2.19601304015(—3)
o matrix dimension of 150 0.08 0.4846616500444 —2.90693218571(—3)
0.10 0.4848450636272 3.60427916939(—3)

some distance into the negative ® region [14]. Table 4 shows results obtained by the
Gaussian elimination method at g =0.1. Although, as explained in the introduction, the
complex coordinate method is equivalent to (though more simple than) the complex
scaling matrix method used to obtain reference values in [13], our results are more
accurate than those given in [13] and cover a finer grid of values of the angle ®.

6 Some unorthodox resonances

In [15], some complex energies were calculated for the Hamiltonian
H(A,B) = —D% + xM _ixN )

The most commonly studied case in the literature is that with M =2 and N=4 but in
[15] the case M =4, N=6 was also discussed. Table 5 shows some results for two
sets of (M, N) values, as obtained by the Gaussian elimination method. For negative
A values, of course, bound states exist and the use of a real W value in the basis set
can produce these.

7 Symmetry and the double well problem

All the preceding examples studied in this work have involved complex resonances
but our final example deals with the ordinary bound states associated with the double
well Hamiltonian

HO) = —D2 — x2 + (k2/2)x4 (10)

When A is small, this Hamiltonian will have close pairs of states of opposite parity at
the bottom of its spectrum. The dominant tradition in matrix approaches is to use the
symmetry centre x =0 as origin and so to build the even or odd parity directly into the
basis functions used to set up the matrix of the Hamiltonian. Thus, for example, by
using an oscillator basis with W =(1, 0) in separate even and odd parity calculations
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Table 5 The lowest even and

odd parity resonances for the M N ER El
operator =D + xM — 2xN, 26 002 0.9520462653053309 1.402573778245021(—2)
calculatedusing W=(1, Dand 5 ¢ (02 2.712788208122200  2.013898488709008(—1)
matrix dimension 150 2 6 004 09193107387010802 5.273643153667654(—2)
2 6 004 2654858021276504  4.633716332349316(—1)
26 006 0.9033613239572396  9.127664934058118(—2)
2 6 006 2660081776872349  6.557404144178417(—1)
2 6 008 0.8958197460011326 1.254636428092339(—1)
26 008 2.682850763658098  8.064038265203445(—1)
2 6 010 0.8927457964926816 1.555432433598369(—1)
26 010 2.711585309963890  9.306087123690415(—1)
4 6 000 1.060362090484183 0.0
4 6 000 3.699156060168530 0.0
4 6 004 1.038002353717577 0.0
4 6 004 3.699156060168530 0.0
4 6 008 1.012731445721011  6.25221492542814(—8)
4 6 008 3.581700216602671  1.288075605381661(—6)
4 6 012 0.9826725857365955  1.594662368407940(—4)
4 6 012 3.431460367418278  2.739336833818093(—3)
4 6 016 0.9440969584873676  3.992421290169972(—3)
4 6 016 322859327560880  5.18915247310509(—2)
The even parity state energy is 4 6 0.20  0.8995394462905228  2.019133790314381(—2)
given first 4 6 020 3.036336773026575  1.920564090658734(—1)

based on the x =0 origin, our method gives the low lying pairs of levels. Some authors
keep the origin at x=0 but use a basis which consists of even or odd combinations
of oscillator functions centred at the well minima at x = 1/A andx = —1/X [16].
While such basis functions show a strong resemblance to the actual eigenfunctions
they have the disadvantage of being non-orthogonal, which complicates the matrix
eigenvalue problem. We tried a calculation in which only the oscillator functions cen-
tred on x = 1/A were used, to see whether the potential itself would introduce the
centrosymmetry into the basis and generate the correct partner peak on the other side
of the origin. To perform this calculation with the point x = 1/X as origin we need
to use the correct potential, which has admixtures of both even and odd parity. It is
found by performing the Taylor expansion at x = 1/X of the potential appearing in
Eq. 10 and takes the form

V=— (1/2A2) +2x% 4 2+ (xz/z) 4 (11)
This potential naturally suggests the choice W =(2, 0) for the basis functions, with
both even and odd functions being included in the basis. Table 6 shows the results
obtained; as the dimension is increased the energies tend correctly to those for the
lowest even and odd pair of levels. This effect is explainable in terms of the specially
favourable properties of harmonic oscillator basis functions. The virial theorem shows
that the value of < x> > for an oscillator function is proportional to its energy, i.e. is
proportional to 2n + 1. Thus, as more functions are added to the basis set, we reach
a stage at which the the basis functions can have an appreciable overlap with the
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Table 6 Energy levels for the

double well Hamiltonian using ND E©3) E04)
the potential of Eq. 11, with 10 —4.1902095978175 —1.8054955213226
originatx = 1/4, for the cases 5, —4.1902336009106 —1.8068973696846
r=03andr=0dasa 5 —4.1902339345051 —1.7751402016719
function of the matrix dimension —1.8207465095929
ND 40 —4.1902342389732 —1.7847047589878
—1.8267498723262
50 —4.1902508125434 —1.7847050286351
—1.8267501124629
60 —4.1899127461966 —1.7847050286292
—4.1905545052753 —1.8267501124656
The E scanning regions used are 70 —4.1899128809639 —1.7847050286292
(4.3, —4.1) for & — 0.3 and —4.1905545052753 —1.8267501124656
(=19, —1.7) for > = 0.4, in 80 —4.1899128809648 —1.7847050186292

steps DE of 0.02

—4.1905545952761

—1.8267501124656

region in the opposite well and so make it possible to describe the partner peak in the
wavefunction. This physical argument describes quite well what happens in the numer-
ical calculation. To establish that the correct lowest eigenvalue is indeed associated
with the “double peak” symmetric wavefunction we can add small x and x? terms to
the potential, as explained previously, to find < x > and < x> > and so reveal the
presence of the second peak at a distance of about 2/A from our origin at the point
x=1/A.

An interesting extra effect appeared in the numerical results. For the deeper well
(with A = 0.3), the results of Table 6 show that the single eigenvalue near —4.2 reaches
a semi-converged value of roughly —4.190234 as the matrix dimension increases. This
energy is the average of the correct lowest even and odd state energies and is also the
energy obtained when a hypervirial perturbation calculation is performed using the
potential in Eq. 11. As the matrix dimension is increased further, the original single
level eventually begins to descend (to become the lowest level) and is then joined by
a level, which moves down from above to form the upper level of the lowest lying
doublet. Many years ago Seznec and Zinn-Justin [17] suggested that perturbation the-
ory based on the well centre should give an energy close to the average of the even
and odd state energies, and HVPT does this. It would be an interesting calculation
(albeit requiring very high precision) to see what trajectory would be followed by the
lowest eigenvalue given by a matrix-based perturbation approach which uses exactly
the same matrix elements as those of the matrix diagonalization approach based on
x = 1/A. In particular, one could ask whether at a sufficiently high order the pertur-
bation approach would “break through” the region of semi-convergence and descend
with the true matrix eigenvalue so as to arrive at the correct even parity ground state
energy.

8 Conclusion

The results for the specimen systems studied in this work show that by combining
Gaussian elimination with inverse iteration using complex basis functions we can
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make an accurate study of either real or complex eigenvalues in a desired region of
the spectrum while retaining the small bandwidth of the Hamiltonian matrix, which
is characteristic of many of the systems, which have been studied by various different
methods in the literature. For systems which can have broken PT symmetry the ability
to handle both real and complex energies by simple adjusting the reference parameter
W is particularly useful. The relationship between a perturbation approach and the
unexpected semi-convergence of the matrix eigenvalues for the double well problem,
which were found in Sect. 7 is clearly something which merits further investigation.
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